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UPPER SEMICONTINUITY OF ATTRACTORS FOR 
LINEAR MULTISTEP METHODS APPROXIMATING 

SECTORIAL EVOLUTION EQUATIONS 

ADRIAN T. HILL AND ENDRE SULI 

ABSTRACT. This paper sets out a theoretical framework for approximating the 
attractor _v of a semigroup S(t) defined on a Banach space X by a q-step 
semidiscretization in time with constant steplength k . Using the one-step the- 
ory of Hale, Lin and Raugel, sufficient conditions are established for the ex- 
istence of a family of attractors {k } C Xq , for the discrete semigroups Sn 
defined by the numerical method. The convergence properties of this family 
are also considered. Full details of the theory are exemplified in the context of 
strictly A(a)-stable linear multistep approximations of an abstract dissipative 
sectorial evolution equation. 

1. INTRODUCTION 

In recent years there has been great interest in the numerical approximation 
of the asymptotic structures and invariant sets of dynamical systems. For au- 
tonomous dissipative systems, the global attractor is characterized as the largest 
compact set invariant under the action of the evolution operator, and the set on 
which all the asymptotic dynamics take place. It is therefore of paramount im- 
portance to show that numerical methods can approximate the global attractor 
of such systems. 

The multiplicity of behavior possible in a global attractor poses a severe test 
in approximation, and thus in general it cannot be hoped that an arbitrary nu- 
merical method will reflect either qualitatively or quantitatively all the features 
of the underlying dynamical system. Indeed, even when the numerical method 
itself possesses an attractor, it may differ in several ways from that of the orig- 
inal system. It is well known that if a single trajectory is approximated over 
a long time, then the corresponding numerical trajectory can be expected to 
diverge from the true trajectory. However, if there are qualitative differences 
between the numerical and true attractors, a numerical trajectory may repro- 
duce behavior entirely without counterpart in the underlying system. Examples 
of this phenomenon are considered, for instance, in the papers of Griffiths and 
Mitchell [9] and Stuart [33]. 
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An appreciation of the difficulties identified in the last paragraph has led to 
efforts, principally in the context of ODEs, to identify particular structures in 
the attractor, such as fixed points and periodic orbits, and to test whether such 
structures are preserved by common time discretizations, such as Runge-Kutta 
and linear multistep methods. This work has been developed by Iserles et al. 
in the articles [10], [20-22]. The inheritance of stability properties for periodic 
orbits has also been studied by investigating the circumstances under which tra- 
jectories are approximated in a Cl sense. For the literature in this area, we 
refer to [1] for one-step methods, and [6] for multistep methods. In the spe- 
cial case of gradient systems whose attractor decomposes into a finite union of 
hyperbolically intersecting manifolds, Hale and Raugel [15] have shown, un- 
der certain practically meaningful conditions, that the entire attractor may be 
quantitatively approximated. 

The investigations outlined above deal with the more fundamental difficul- 
ties of asymptotic approximation-that of showing precisely what structure of 
the attractor is inherited under discretization. Complementary to this work has 
been a movement to prove weaker but more global results relating to attractor 
approximation. Kloeden and Lorenz [25, 26] coined the notion of an attracting 
set, which is compact and asymptotically stable-an object more general than 
an attractor-and showed in various contexts that these sets are well approxi- 
mated under discretization. The construction of the approximating attracting 
sets is simplified and extended to a Banach space setting in [17]. However, the 
landmark paper in this area was that of Hale, Lin and Raugel [14], which de- 
rived a general approximation result for the attractor itself. Below, we outline 
this result in the context of time discretizations. 

Consider a CO-semigroup S(t), defined on a Banach space X, possessing a 
local attractor v . (A global attractor is a fortiori a local attractor, see Defini- 
tion 4.4; we note that other terminology from the theory of dynamical systems is 
also defined in ?4.) Next, take a family of one-step time discretizations of S(t), 
generating a family of maps {Sk} parametrized by the time step k. Then, for 
all sufficiently small k, under relatively weak conditions on the approximation 
and compactness properties of the method, there exists a local attractor Vk for 
the semigroup Skn (the latter is defined by composition of Sk, for n E N) . In 
addition, the following convergence result was shown. Given e > 0, there exists 
ko(e) such that for all k E (0, ko], .sk is within an e-neighborhood of X. 
This is otherwise called the upper semicontinuity of the sets 5Vk with respect to 
the parameter k at the value k = 0. 

As remarked in [14], the upper semicontinuity of the family {I }k>o does 
not show that it is a good approximation to X, and we again note that in such 
generality and under such weak conditions this is not to be hoped for. However, 
the theory does guarantee that this family will be close to v . This implies that, 
provided the trajectories of Sk remain in a bounded region, their quantitative 
deviation from some true behavior of the trajectories of S(t) is restricted as 
k tends to 0. However, on a small scale, the qualitative behavior of the {I-Vk} 
may continue to deviate; also whole regions of ,v may fail to be approximated 
in any sense by the attractors of Sk . 

We conclude that whilst the theory described above does not penetrate into 
the more thorny problems of attractor approximation, it does provide a unifying 
structure for other efforts, and yields a good deal of general and practically useful 
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information. This is our motivation for extending the theory of Hale, Lin and 
Raugel to the case of multistep time discretizations of S(t). 

There are several ways in which one might try to do this, and in the case 
of backward difference approximations to a Galerkin discretization of certain 
gradient systems, a method has already been described by Elliott and Stuart [7]. 
In the context of ordinary differential equations, Kirchgraber, Stoffer and others 
[23, 24, 32] have shown that, given a consistent linear multistep approximation 
generating a trajectory { Un oo } , there exists a one-step method with trajectory 
{Yn} ?0 , and constants C > 0, 0 E (0, 1), such that 

IUn--ynII < COn for all n > 0. 
Here, C and 0 are independent of both n and k. Furthermore, all possible 
trajectories for the one-step method may be generated by the multistep method. 
Hence, the asymptotic behavior of the multistep method is completely charac- 
terized by that of the one-step method. If such a theory were extended to the 
infinite-dimensional case we study here, then the convergence of the attractors 
of an asymptotically equivalent one-step method could be considered using the 
results of [14]. We shall not use either of these approaches here. 

Our approach to this problem is to consider the continuous map Sk defined 
on some subset of the product space Xq, where q is the number of steps in 
the method. This mapping, originally considered by Butcher [2] and Skeel [31], 
is given by 

(1. ) Sk(Ul VqT(2 ** q (k; Ul,** Uq) 
where V(k; Un,..., Un+q-1) is the mapping that generates Un+q from the 
previous q time steps. Repeated compositions of Sk generate a semigroup 

n on Xq. One expects Skn to approximate S(t) in some sense, and one 
also expects that if S(t) possesses an attractor, then so does Skn, at least for 
sufficiently small k. However, problems of commensurability arise because 
these two semigroups, and therefore their attractors, are defined on different 
spaces for q > 1. 

Conventionally, when a multistep method is used to approximate a single 
trajectory S(t)uo , for given u0, the mapping defined by the numerical method 
is described by 

(1.2) yTSk _x_ X, 

where v: X Xq is a starting method, and yT: Xq __ X is a finishing method. 
Typically, v is a complicated function mapping uo to an approximation of 
[u0, S(k)uo, ... , S((q - l)k)uO]T, whilst yT is merely the projection onto the 
last coordinate. However, whatever v and yT are taken to be, (1.2) cannot 
represent a semigroup, unless 

yTSknVyTSkV = yTSkn+mV for all n, m > 0. 

In the simple case where Sk is linear and nonsingular, a nonzero relation of this 
form is possible only when for a certain eigenvalue of Sk, yT and v belong to 
the respective left and right eigenspaces. The possibilities when Sk is nonlinear 
are less clear, and we do not pursue this approach. 

Rather than modifying Skn to act on X, we instead propose to modify S(t) 
to act on Xq. To do this, we consider v: X Xq and yT: Xq _X such 
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that yTv = I. In general, we allow v and yT to depend on any parameter of 
the two semigroups, including k, but excluding n and t. We observe that 

(1.3) VS(t)yT Xq_+ Xq, VS(t + S)yT = VS(t)yTVS(S)yT. 

We note however that this construction has the drawback that VS(O)yT is 
not the identity on Xq, and hence the family {VS(t)yT}t>o is not a conven- 
tional semigroup. Nevertheless, it is still a closed associative set with an identity 
element- vyT_and hence, we term it a monoid (see Definition 4.3). Further- 
more, all the available theory relating to an arbitrary semigroup 5?(t) acting 
on a given Banach space 2', which does not need the axiom that 5(O) = I, 
applies in an obvious way to the monoid case. Both, attractor existence theory 
and the attractor approximation theory of [14], are in this category. 

If sV is the attractor of S(t), then the attractor of the monoid we have 
defined in (1.3) is v(k)s9 . Our aim is to show that there exist local attractors 
s4k for Sk in a neighborhood of this set converging to v(O)s9 in Hausdorff 
semidistance (see Definition 4.2), as k -+ 0. For small k, one may deduce 
that Skv(k) v(k), and since Sk maps the second coordinate to the first, and 
so on, then, provided the method is strictly stable, 

lim v(k) = 1 =_ [ 1, 1,.., 1 ]T. 

In fact, for linear multistep methods approximating sectorial evolution equa- 
tions, we will show that one may choose v(k) _ 1, and yT to be another 
constant vector in Rq, which we shall describe later. 

Assuming that, for k sufficiently small and n > 0, Sk is well defined in 
a neighborhood of 1s,V; that is, the trajectories {Un}f? of Sk always re- 
main in the domain of definition of V/ in (1.1), we may apply the theory of 
[14] to demonstrate, under appropriate conditions on the compactness of Sk 
and its approximation properties with respect to 1S(t)yT, that there exist local 
attractors sVk for Sk converging in Hausdorff semidistance to 1s9 , as k -+ 0. 

We have outlined above a theoretical framework for the approximation of the 
attractor using a multistep method. However, there are a number of matters that 
we have glossed over in the last paragraph, which form the principal difficulty 
in applications. These are verifying that: 

(i) Sk is well defined in a neighborhood of 1st; 
(ii) Sk approximates 1S(t)yT uniformly in the sense of [14] (see Definition 

4.6); 
(iii) Sk is asymptotically smooth in the sense of [14] (see Definition 4.5). 

It is these matters, and especially establishing (i) and (ii) by a suitable error 
estimate, that constitute the main work of this article. 

We apply our theory in the context of linear multistep methods approximat- 
ing sectorial evolution equations of the form 

(1.4) u, + Au = f(u) 

on X. Here, A is a sectorial operator generating an analytic semigroup e-Al on 
X, and for y E [0, 1) , f: ?4(AY) -* X is a locally Lipschitz function. (Note 
that -(AY) is the domain of a fractional power of A, otherwise viewed as an 
interpolation space intermediate between X and 91(A), the domain of A.) 
We remark on the wide applicability of our results since, as is shown by Henry 
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[16], systems of nonlinear reaction-convection-diffusion equations, including 
the incompressible Navier-Stokes equation, may be written in the form (1.4). 
The basic local existence, uniqueness and regularity results for (1.4) are stated 
in Lemma 3.1. For more detailed information see [16]. 

The outline of the remainder of the paper is as follows. In ?2, error estimates 
are first obtained for linear multistep approximations of the linear semigroup 
e-At . The corresponding discrete semigroup is Tn(kA), where T(z) E 2(Cq) 
is the companion matrix for the method, whose domain of stability is required 
to contain a(A), the spectrum of A . Tn(kA) has previously been considered 
by Le Roux [27] and Crouzeix [3], and more recently by Lubich and Nevan- 
linna [28] and Palencia [29]. The principal linear error bound, for the case 
ERe[a(A)] > a > 0, is stated in Theorem 1 as 

(1.5) II Tn(kA) - le-AnkyTI j(xq) < Coe-ank/2 (ak + l/n) 

for CO independent of a, k and n. Here, yT is the left eigenvector of T(O) 
corresponding to 1, the principal eigenvalue. 

It is of interest that this estimate also implies that 

IITn(kA)II < Ceank/2 

which improves on the best bound of which we are aware, obtained in the 
pioneering work of Le Roux [27]. 

Section 3 addresses the linear multistep approximation of (1.4). In Theorem 
2, the associated mapping Skn is shown to be well defined in a ball B(O, R) c 
9(AY)q, for sufficiently small k. The main nonlinear error estimate is then 
established by Theorem 3, in association with a proof that Skn is well defined in 
a ball B(O, R) c ?(AY)q, for nk E [0, T], and some T > 0, provided k is 
sufficiently small. This last result is somewhat more powerful than condition (i) 
above, that Skn be well defined in a neighborhood of 1s,1, and implies that the 
attractors sVk have as domains of attraction arbitrary balls in ?(AY)q, rather 
than sufficiently thin neighborhoods of the pencil space 12f(AY). We remark 
here that the idea for our constructions in this section and the method of proof 
for the main error bound were inspired by the paper of Eirola and Nevanlinna 
[6] in the context of ordinary differential equations. 

In ?4, we outline the attractor approximation theory of [ 14], and state in The- 
orem 4 a variation of their main attractor convergence theorem for the monoid 
case introduced above. The approximation properties of Skn required by the 
hypotheses of this theorem are given by the results of Theorem 3. We require 
additional assumptions on A, in particular that it has compact resolvent, in 
order to show the compactness properties of Skn required by the hypotheses of 
Theorem 4. Finally, in Theorem 5, we apply Theorem 4 to demonstrate the 
existence and upper semicontinuity of a family of local attractors {Sgk} >0 for 
the family of semigroups {Skn}k>o. 

2. LINEAR ESTIMATES 

We begin by defining a sectorial operator A and by stating the assumptions 
we place on a linear multistep method to ensure that it is a dissipative approx- 
imation to the equation 

(2.1) u, +Au = O. 
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For X a Banach space, let 912J(A) be a dense subspace of X. We consider a 
closed linear operator A: 9(A) X, such that for constants a > 0, M > 1 
and O E (O, 7r/2), 

M 
(2.2) II(AI-A)-'11< Aa forallAeC\Sa,o 

where Sa,0 = {a} U {JA E C\{a} I 0 > I arg(A - a)I} (we also consider Sa,&, the 
closure of Sa,o in the Riemann sphere topology). An operator A satisfying 
these conditions is known as sectorial. Thanks to Friedman [8], A is the gen- 
erator of an analytic semigroup e-At on X, for which there exists a constant 
C such that 

(2.3) Ile-AtII < Ce-at for all t > 0. 

Definition 2.1. For the equation ut = F(t, u), and given initial data {Ui=i7 , a 
q-step linear multistep method, parametrized by its time steplength k, generates 
{Un+q}n>o, an approximation to {u((n + q)k)}n>o, from the equation 

q q 
(2.4) Z a iUn+i = kZ 5 iFF((n + i)k, Un+i) for all n > 0, 

i=o i=o 

for constants {fai}lq0, {fliq}0 normalized so that aq = 1. 
The method is known as consistent if 

q 

(2.5) Lai = 0. 
i=O 

It is known to have pth order, for p = 1, 2, ..., if, in.addition, 

.q q 
(2.6) EaiiS = sZflis-l for all s = 1,2, ..., p. 

i=O i=O 

As is well known [1 1], an equivalent condition to (2.5, 2.6) is that 

(2.7) p(ez) + za(e-z) = O(zP+ ) 

in a neighborhood of the origin, where 
q q 

(2.8) p(z) - aizi, a(z) - ,Zfzi 
i=O 1=0 

Definition 2.2. For a linear q-step method, we define 

i (z) = ,X+fz for i=0, 1, 2, ..., q. 

The companion matrix for the method is given by 

. I I 
(2.9) T(z)_ 0 . 

L -o(z) I 31(Z) ** q_I(Z)J 
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Definition 2.3. We call a linear q-step method strictly A(a)-stable, for some a E 
(O, T7/2), if the following assumptions hold: The spectrum of T(z), a(T(z)) = 
{21(Z), ..., Aq(Z)}, ordered so that ILi(z)l > I)2(Z)l >? l?q(Z)I, satisfies 

IAi(z)l < 1 for all z E So,a\{O}; Ai(O) = 1; 

jAi(z)j < 1 for i = 2, 3, ... , q, for all z E SO,a. 

Henceforth, we shall assume that (2.1) is approximated by a pth-order, 
q-step, strictly A(a)-stable linear multistep method, where p, q > 1 a E 
[0, 7r/2), with 0 the sectorial angle characterizing A in (2.2). 

In order to obtain the linear estimate ( 1.5), it is necessary to study the behav- 
ior of Tn (z) for all z E So,0 . Because of the very strong conditions imposed 
in Definition 2.3, Tn(z), like e-nz, tends uniformly exponentially to 0 in 
So, 0\No, for No any neighborhood of the origin. Hence, it is only the behav- 
ior of Tn (z) in a region of the form No n So, 0 that prevents the method from 
having an infinite order of accuracy, and so it is in this region that we must 
study its behavior most closely. 

Lemma 2.1. There exists a neighborhood No of the origin such that A (z), the 
principal eigenvalue of T(z), is an analytic function with 

(2.10) Al (z) - e-z = O(zP+1), Z E No. 

Furthermore, the corresponding left and right eigenvectors yT(z) and v(z) may 
be analytically defined in No, so that v(z) = [1, Al (z), ... , 4l(z)]T and 
yTv = 1. 

Proof. As is well known [27], the eigenvalues of T(z) are the solutions of the 
w-equation P(w; z) = 0, where 

P(w; z) p(w) + za(w) 

is an analytic function from C2 to C. At z = 0, w = 1, 

OP 
Ow = p'(l) #O , 

where the last inequality is a consequence of )I(0) being a simple root. Fur- 
thermore, it is known from (2.7) that 

P(ez; z) = 

The analytic implicit function theorem [4] implies the existence of No, a z- 
neighborhood of 0, in which AI (z), the branch of the solution to P(w; z) = 0 
beginning at z = 0, w = 1 , is analytic and possesses a convergent Taylor series 
expansion about 0, agreeing with e-z up to and including O(zP). 

The form of v(z) may be verified by direct substitution. The individual 
components of yT(z) satisfy 

-30(Z)Yq(Z) = A (Z)YI (Z), 

Yi(Z) - ji(Z)Yq(Z) = A I (Z)Yi+I (Z) for i = 1, .I. , q - 1. 

Since Yq(z) = 0 implies yi(Z) = 0 for all i, we may provisionally set 9q(z) = 

1, and the above equations may be solved recursively to find analytic vi (z), 
= 1, 2, ..., q - 1, using the fact that AI (z) is bounded away from 0 in a 
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refined neighborhood No. At z = 0, an argument of Eirola and Nevanlinna 
[6] implies that 

q 

yT(O)V(O) = yT(0)1 = Y 
i=l 

q-1 q 
(2.11) = qyq + ,i(Yi - YSi+i) =yq E iai 

i=l. i=O 
q 

=Yq , i = YqP'(1) 7&O. 
i=o 

Hence, in a refined neighborhood No 
, 
T(z)v(z) $ 0 by continuity. Thus, the 

required analytic normalization for y(z) exists. 0 

Considering the operator (T(z) - A1 (Z)V(Z)yT(Z))n in No, we see that its 
eigenvalues are 

10, A2n(Z), ..,An(Z)j, 

and that, therefore, it tends to 0 exponentially fast with n. Hence, for large 
n, Tn (z) -An (z)v(z)yT(z) in No . One knows from Lemma 2.1 that A I(z) is 
closely approximated by e-z, so one expects e-nzv(z)yT(z) to be a good ap- 
proximation of Tn (z) for large n . However, in this paper we will only consider 
the suboptimal approximation e-nzlYT, where 1 = v(0) and yT = yT(0) . The 
following lemma establishes some of the properties of that approximation in a 
region of the complex plane associated with a contour integral appearing later. 

Lemma 2.2. There exist No, a neighborhood of 0, and constants C > 0 and 
A E (0, 1), such that 

(2.12) I(Tn(z) - le-nzYTII < C(An + ze-nz/2), 

for all z E N0o n (B(0, (cosec 6I)/n) u S0, 0) and all n E N. 
Proof. Let No be as in the statement of Lemma 2.1. For z E No and n E N, 

IITn(Z) - le-nzyTII < IITn(z) -v(z),)n(z)yT(z)ll 

(2.13) + le nzI IIv(z)yT(z) _ lyTll 
+ IIV(Z)y(z)TII lAn(z) - e-nzl 

II + I2 + I3. 

In the analysis below, let C denote a generic constant independent of k and 
z. Thematrix T(z)-_Al(z)v(z)yT(z) haseigenvalues {0, 2(Z),... ,q(Z)}. 
We recall the well-known construction of Isaacson and Keller [19], which shows 
that for a given invertible M E 2(Cq) and e > 0 one may find an invertible 
H E 2'(Cq) such that IIH-IMHII < p(M) + e, where p(M) is the spectral ra- 
dius of M. Since p(T(z) -A, (z)v(z)yT(z)) = I22(z) I < 1, there exist invertible 
matrices H(z) and H-I (z) in a neighborhood of 0, continuously dependent 
on z, such that 

IIH (z) (T(z) - AI (z)v(Z)yT(z))nH(z)ll ? (I12(Z)I + 1 )fl 
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Hence, there is a continuous function C(z), defined on No, such that 

(2.14) II(T(z) -2(z)v(z)y(z))nII < C(z) (V2(z)I + 

The functions C(z) and '(jA2(z)l + 1) may be uniformly bounded above in 
No by constants C > 0 and A E (0, 1), respectively. Noting the identity 

(T(z)-_A (Z)V(Z)yT(Z))n = Tn (z) - An (Z)V(Z)yT(Z) 

we deduce the existence of constants C > 0 and A E (0, 1) such that 

(2.15) I, < CAn for all z E No and n E N. 

By the continuity of dv/dz and dy/dz in No, there is a constant C such 
that 

(2.16) 12 < Clzenz for all z E No and n E N. 

We now consider 1A4n(z) - e-nzI in No. By Lemma 2.1, Aj(z) = e-z + 
C(z)zP+lC for some analytic C(z) and z E No, which implies 

logA)(z) = -z + CI(Z)ZP+l 

for some analytic Cl (z) in a possibly refined neighborhood No. Hence, 

jAn(z) - e-nzI < A(z)B(z)Ize-nzI2I, 

where 

A(z) = le-nz/41 
I 

- exp(nC,(z)zP+l) 

n Ci(z) zP+lI 
B(z) = jnCj(z)zPe-nz/41. 

An application of the maximum modulus principle implies that both A(z) and 
B(z) may be bounded independently of n in the regions No0nB(O, (cosec 6I)/n) 
and N0 n S0, , provided diam(NO) is sufficiently small. Hence, for a possibly 
refined neighborhood No, 

(2.17) I3 < Clze-nz/2l for all z E No n (B(O, (cosec 6)/n) u S0,) and n E N. 

By a similar argument, an identical bound may be obtained for I2, and hence 
(2.12) follows. 0 

The following two lemmas, due to Le Roux [27, Lemmes 3 and 4], charac- 
terize the behavior of the operator Tn(z) away from No. 

Lemma 2.3. For any bounded neighborhood No of 0 there exist constants C > 0 
and A E (O, 1), independent of n, such that for all z E So,O\No and n E N 

(2.18) ITn(z) - le-nzYTIIy(cq) < CAn. 

Lemma 2.4. For any bounded neighborhood No of 0 there exist constants C > 0 
and A E (O, 1), independent of n, such that for all z E So,o\No and n E N 

(2.19) II Tn (z) - Tn(oQ))y(Cq) < CA. 

We are now in a position to state and prove the main result of this section. 
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Theorem 1. Suppose that A is a sectorial operator satisfying (2.2) for constants 
M > 1, a > 0 and 0 E (0, 7r/2). In addition, suppose that for p, q > 1, 
the equation ut + Au = 0 is discretized by a pth-order q-step linear multistep 
method, strongly A(a)-stable for some a E [0, 7r/2), with companion matrix 
T(z) . 

Then, the linear operator Tn (kA) : Xq Xq is well defined for all n > 0, 
and there exists a constant Co, independent of n, a and k, such that for k 
sufficiently small, 

(2.20) IITn(kA) -le-nkAYTIIY(xq) < Coe-ank/2 (ak + 1/n) for all n E N. 

Proof. Let R be the largest radius such that B(O, 2R) c No, where No is 
as in the statement of Lemma 2.2. Let us choose the maximum of the three 
constants A in the statements of Lemmas 2.2-2.4 and exp(-(R/4) cos 0), and 
again denote it A. For a > 0, we require that k < I logAl/a (no restriction 
applies if a = 0). This implies that eak/2A < A1/2 < 1. 

We consider first the case n > 2/R. The function f(z) = Tn(z) - Tn(co) - 
le-nzYT is analytic in the region So,0 U No and vanishes at oo. Hence, one 
may use the Dunford-Taylor integral formulation [5, Section VII.9]: 
(2.21) 
eank/2(Tn(kA) - lenkAyT ) 

- eank/2Tn(oo) + eni [T (z) - T (c,o) - lenzYT](zI - kA)-' dz. 
2z +ak 

Here, F + ak is the positively oriented curve, lying in the resolvent set of kA, 
equal to the union of the three portions 

IF + ak = ak + , 0 < q < 27 - 0, 

F2 + ak = ak + re"O, 1 /n < r < R, 

r3+ak=ak+re?iO, R<r< oo. 

Geometric considerations show that F + ak c B(O, (cosec 6)/n) u go, o for 
all ak > 0. Hence, we may apply Lemma 2.2 to bound IITn(z) - e-nkzlYTIi 
in (IF + ak) u(F2 + ak). 

Below, we show that the right-hand side of (2.21) may be bounded by 
C(ak + l/n), for some C independent of n, a and k, and hence deduce 
the theorem for n > 2/R. Inequality (2.2) and Lemmas 2.2-2.4 are used tac- 
itly. Note that Ileank/2Tn(oo)II < An/2 < C/n. Hence, 

e ank/2n z n ny]Z 
||27r i j + [T ( - T 

(cOo)- len zYT]-( - kA)-' dz 27r J+ak 

M f C((eak/2A)n + Ize-n(z-ak)/2 

- 27( Jr1+ak Iz - akl 
dz 

<M C(A /2 + (Ily + ak)Ie-nY22I) 

? MC(A n2 + (ak + I/n)) 

? C(ak + I/n), 
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eank/2 nT(z) ( -nzyTI(ZI 
27 2zi (+a[T (z- T (o le- Y](IkA)-I dz| 2iU1r+akI 

< M C((eak/2A)n + Ize-n(z-ak)/2I) 

2 1r2+ak Iz - akl dz 

M f C(An/2 + (jyj + ak)le-nYI2j1) dy 
27r Jr2 IYI 

<CM;1 (An!2 + e-(nr/2)coso(1 + ak/r))dr 

< C(A l2log n + 2 sec f(ak + 1 /n)) 
? C(ak + 1/n), 

eank/2 
e2ri [T n [ (Z) -T 

n 
(x) - le nzYT](zI - kA)'- dz 

< M f C(eak/2A)n dz 
27r r3+ak Izj jz - akj 

M CAn/2 < 2 j -(-- dy -27r Jr3 lY + akl lYI 
CMAn/2 00 dr 

JR r2 
< C/n. 

For n E [1, 2/R] we may similarly bound the right-hand side of (2.21) by 
C(1 + ak), for C independent of n and k, by considering F + ak where 
r = r3 U r4, 

r4 = Re, f < 0 < 27r - 0. 

Hence, we may choose CO so that (2.20) holds for all n E N. Since enkA is a 
bounded linear operator, so is Tn(kA), and hence the latter is well defined. 0 

Note that combining (2.3) and (2.20), we may deduce that there exists a 
constant C, independent of k and n, such that, for sufficiently small k, 

(2.22) jjTn(kA)jj < Ce-ank/2. 

We remark that if A obeys (2.2) with strictly positive a, then (2.2) is also 
obeyed with a taken to be 0, for the same M and 0. Hence, the following 
result holds for the same CO as in (2.20), without restriction on the step size 
k. 

(2.23) IITn(kA) - le-fkAYT L,s(Xq) <Co for all n E N. 
n 

3. NONLINEAR APPROXIMATION 

Let A be a sectorial operator of the type considered in the last section, and 
suppose that Ay is a fractional power of A, for y E [0, 1). The domain of 
Ay, r(AY), may be considered as a Banach subspace of X with norm IIAY(.)II, 
where jj j is the norm of X. In this section we consider equations of the type 

(3.1) u,+Au=f(u), 



1108 A. T. HILL AND ENDRE SULI 

where f : 2(AY) -- X is a locally Lipschitz continuous function. The theory 
of fractional powers of sectorial operators and of equations of the form (3.1) is 
considered in [16] and [30]. As is shown in [16], systems of reaction-convection- 
diffusion equations and the incompressible Navier-Stokes equations may be put 
into the form (3.1), and hence the range of applicability of our results is wide. 

To approximate (3.1), we use a strongly A(a)-stable linear pth-order, q-step 
method, for p, q > 1 and a E [0, 7r/2): 

q q 

(3.2) ZaUn+i= kZfL i(-Aun+i +f(Un+i)) for n >O, 
i=o i=o 

with initial data { Ui}=i7O given in a bounded set of 2(AY). 
Our aim in the present section is to prove, in a nonlinear context, an error 

bound of the same kind as was given by Theorem 1 for the linear monoid 
le-AtYT. We proceed initially to outline the known existence and regularity 
theory for (3.1). Next, we show that, for sufficiently small k, there exists a 
unique solution Un+q to the implicit equation defined by the numerical method 
(3.2). This result implies that Sk: (AY) q -f (AY)q, the mapping associated 
with the method, given by 

SkUn l, Un+" for Un [Un un+q-1]T 

is well defined. 
Subsequently, given the semigroup S(t): 2(A7') -* 2(AY), defined on Uo E 

X by S(t)uo = u(t), the solution to (3.1), we use the same principle as was 
applied to e-At in the last section, to transform S(t) into the monoid 

1S(t)yT : O(Ay)q -- (Ay)q , 

where yT is again the left eigenvector of the matrix T(0) for the eigenvalue 1. 
Following this construction, the semigroup Skn and the monoid 1S(t)YT are 

commensurable-both are defined on O(AY)q . This enables us to consider and 
bound the error II(S2 - 1S(t)YT)UOII in the norm of ?(AY)q, which we do in 
Theorem 3, the main result of this section. When a local attractor v exists for 
S(t), this error bound is a key element in establishing sufficient conditions for 
the existence of local attractors for Skn in a neighborhood of Ld , the attractor 
of 1S(t)YT. 

Besides giving the existence and regularity of solutions of (3.1), the following 
lemma states a Lipschitz property of f(u(t)), needed for our main error bound. 

Lemma 3.1. Let A be a sectorial operator obeying (2.2) for some M > 1, a > 0 
and 0 E (0, 7r/2), and suppose that, for y E [O, 1), f: O(AY) -_ X is locally 
Lipschitz continuous. Then, given initial data uo in a ball B(?(Ay); 0, r), for 
some r > 0, there exists a time T(r) > 0 and a unique solution u(t), defined 
on [0, T], such that 

1. u E C[[0, T]; ?(Ay)], and u(O) = uo; 
2. Ut E C[(0, T]; ?(Ay)], u E C[(O, T]; ?(A)], f(u(.)) E C[[O, T]; X], 

and so for t > 0 every term in (3.1) is an element of X. 
In addition, for t E (0, T], the solution may be written as 

I. t 
(3.3) u(t) = e -AU0 + e jA(u-)(US)) ds. 
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Furthermore, if such a solution, as described above, exists on a compact time 
interval [0, T], then there exists C > 0 such that if T > t + h > t > h > 0, 
then 

(3.4) lIf(u(t)) - f(u(t + h))II? < Ch. 
t 

Proof. All results, except the last sentence of the lemma, are given explicitly 
in [16, Theorems 3.3.3 and 3.5.2]. The last part also follows easily from these 
results. O 

The following lemma summarizes several results on norms of simple func- 
tions of A which we shall need in the remainder of this section. 

Lemma 3.2. Let A be a sectorial operator, obeying (2.2) for some a > 0. Then, 
for I? E [0, 1], there exist generic constants C = C(M, a, 0, fi) such that 

IIA8( - A)-' 11 <CIA-(1 -f) for E E C\Sa,0, 

IIAfle-AtII < Ct-e-at for t E (0, oo), 

IIAfl[I-eAk]II < Ck for k E (0, 1]. 
Furthermore, if a linear multistep method is strongly A(a)-stable, for some a E 
(0, 7r/2), then there exists a constant C1 > 1, independent of k, such that 

II31(kA)II < C1 for all i E [0, q]. 
Proof. We note that the conditions given in Definition 2.3 for strict A(a)- 
stability are sufficient to imply 13q > 0 (see [12, p. 277]). All the results now 
follow easily from those of [16, ?1.4]. o 

The following theorem establishes the existence of a locally unique solution 
Un+q to (3.2) for all sufficiently small k, using the contraction mapping theo- 
rem. 

Theorem 2. Let the assumptions of Lemma 3.1 hold with respect to A and f, 
and suppose that {Ui}=O is given data for (3.2) in B(?2r(AY); 0, r), for r > O. 
Then, there exists a constant Ro(r) > r such that for all R > Ro there is a ko(R) 
such that, for n = 0 and k E (0, ko], there is exactly one solution of (3.2) in 
the ball B(?(AY); 0, R). 
Proof. We rewrite (3.2), for n = 0, as the implicit equation Uq = Gk(Uq) 
where 

q-1 

(3.5) Gk (v) Z{-i(kA) Ui + k(I + flqkA)l- I flif(Ui)} 
i=o 
+ k(I + flqkA)<1fqf(v). 

Let us define the closed convex V {u E (AY) I IIAY(Gk(O) - u)II < 1}. We 
shall show that Gk is an endomorphism of V, for all sufficiently small k. 

We first show that Gk(O), and hence V, can be bounded in O(AY) inde- 
pendently of k: 

q-1 

IIAYGk(O)II ? E 116i(kA)II IIAYUil + kIIAY(I + flqkA)-lll Ihil IIf(UDII 
(3.6) i=o 

+ k IIAY [I + f3qkA]- 1 fiq llf(O) (? 
< (q + )CI(r +Ckl-YL), 



1110 A. T. HILL AND ENDRE SULI 

where C1 > 1 and C are constants from Lemma 3.2, and L is a uniform 
bound for IIf(u)II, for u E B(?2f(AY); 0, r). 

Now, we assume that k < 1 and fix Ro = (q + 1)C1(r + CL) + 1. We 
note that C1 > 1 implies Ro > r; thus, V c B(?'?(AY); 0, Ro). Suppose that 
u E V; then 

IIAY(Gk(U) - Gk(O))Il < k1JAY(I + /qkA)- 1l,jBflq(f(u)- f())II 
< kl-YC(RO, y)jlAYujj < kl-YRoc(RO, y),. 

where C(Ro, y) depends on the local Lipschitz constant for f in 
B(?(AY); 0, RO). 

Hence, Gk is an endomorphism of V, provided that 

(3.7) 
kl-y < 

RoC(Ro, y) 

We now show that Gk is a contraction on V. For u, v E V, 

IIAI[Gk(u) - Gk(v)1II = k1jAY(I + flqkA)-1flq(f(u) - f(v))II 

< k l -YC(Ro, y) IIAAY(u - v) I , 

where C(Ro, y) is as above. Hence, (3.7) is sufficient to imply that Gk is both 
an endomorphism and a contraction of V, and we may apply the contraction 
mapping theorem to deduce the existence of a fixed point for Gk, unique in 
V. 

Given some R > 0, the function IIf( )II is uniformly bounded on BR - 

B(?(AY); 0, R). Hence, provided k is sufficiently small, any solution to (3.2) 
lying in BR is also in V, and thus there is at most one solution in BR. On 
the other hand, if R > RO, then V c BR. Hence, for R > RO and k small 
enough, there exists a unique Uq in BR. ? 

To compare the quantities U(nk) = 1S(nk)YTUO and Un = SknU0, for 
U0 = [U?, ..., Uq-']T, we consider integrated forms of equations (3.1) and 
(3.2), which are written in terms of their respective vector variables in such a 
way as to make explicit the linear operators le-AtYT and Tn(kA). Considering 
Skn first, we use a construction for f(.), due to Eirola and Nevanlinna [61 in 
the context of ODEs, to write (3.2) in a vector form which mimics (3.3), the 
Volterra integral equation form of the solution of (3.1): 

n-I 

(3.8) Un = Tn(kA)UO + k E Tn-l-i(kA)[I + IJqkA]-'F(U', Ui+'), 
i=O 

where we define 

Iqq-1 8qT 

(3.9) F(U, V) _|0, ..,0, flqf(Vq) + ,,jf(Uj+l) 

We recall from (2.1 l ) that q Eq YT = -q,= 3 . Hence, 

Y7'F(ul, ul ) = Yq j fl,f (u) = ~f(u). 
i=0 
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Now if u(t) is the solution of (3.1) for initial data YTUO, then from (3.3) we 
have 

u(t) = e-AtyTUO + e-A(t-s)YTF(lu(s), lu(s)) ds. 

Multiplying the last equation by the vector 1 , we note that U(t) = lS(t)YTUO - 

lu(t), and hence 

(3.10) U(t) = [le-AtyT]UO + j [le-A(t-s)YT]F(U(s), U(s)) ds. 

The representations (3.8) and (3.10) put us in a position to derive an error 
bound for IIAY(U(nk) - Un)jj = IIAY(lS(nk)YT - Skn)U0II. 

Theorem 3. Suppose that T(z) obeys the conditions of Theorem 1; that sectorial 
A obeys (2.2) for a > 0; that f: -(AY) -* X is locally Lipschitz continuous, 
and that initial data U0 E B(92(AY)q; 0, r) is chosen for (3.10), for some r > 0 . 

Then, there exists a constant T(r) > 0 and a maximal time T* E [T, 00], for 
which a solution U E C[[0, T*]; O(AY)q] n C[(O, T*]; O(A)q] exists. Further- 
more, if T E (0, T*), then for all sufficiently small k > 0, and all nk E [0, TI, 
a solution Un exists for (3.8) with initial data U0 such that 

(3.11) IIAY(U(nk) - Un)II < [2Cyr + K(T, r)k6] 

where a is an arbitrary constant in (0, 1 - y), Co is the constant in the statement 
of Theorem 1, and K(., ) is a positive function, nondecreasing in its arguments, 
dependent on (1 - y - (5)-i, but independent of k. 

Note. If g(A) is a function of A, defined on 9(A), we use the notation 
g(A) to represent the q-dimensional matrix diag(g(A), ..., g(A)) defined on 
O(A)q . 

Proof. Since UOeB(2(AY)q; 0, r) ,wehave Uo0= yTUOEB(.'(AY); 0, IIYlir). 
Lemma 3.1 implies the existence of a solution u(t) to (3.1), for uo = YTUO, 
on an interval [0, T] for some T> T(r) > 0. The derivation leading to (3.10) 
demonstrates that lu(t) is a solution to (3.10) if and only if u(t) is a solution 
of (3.1). Hence, existence and uniqueness of a solution U(t) for (3.10), with 
U(0) = UO, follows on setting U(t) = lu(t). 

We now take k to be an arbitrary, but fixed, positive number. Defining 

Ml = sup IIAYU(s)II + 2COr + 1, 
sE(O, T] 

we consider the following inductive hypothesis. 
Hn: There exists exactly one solution {U'}7 I for (3.8) with the property 

that IIAYUill < Ml for all i = 0, 1, ..., n. 
We will show the existence of ko, independent of n, such that if k E (0, ko], 

(3.12) Hn-1 =* Hn , 

for integer n E [1, T/k]. When this has been achieved, induction will imply 
that Hn is true for all n E [0, TIk] because HO is clearly true regardless of k . 
The required existence of solutions to (3.8) will then follow. The error bound 
(3.1 1) will be derived in the course of establishing the implication (3.12). 
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Let us assume now that Hn 1 is true for some n > 1. 
Applying Theorem 2, with U0 replaced by Un- , and r by M1 , we conclude 

that, provided k E (0, ko(Ro(M1))], there is exactly one solution Un to (3.2) 
such that 11AYUn+q-111 < M2, where M2 = Ro(M1) > Ml and Ro is as in the 
statement of Theorem 2. 

For t = nk and ti = ik, we may write (3.10) as 

k n I(i+1 )k 

U(t) = le-AnkYT+EI le YTF(U(s), U(s)) ds. 
i=O I 

Subtracting (3.8) and taking norms in 2(AY), we obtain 
(3.13) 
IAY(U(t) -Un)j 

< IIAY[e-AtYT - Tn(kA)]U0II 
n-I r(i+l)k 

+ 1 1 IIAYeA(ts)1YT[F(U(s), U(s)) - F(U(ti), U(ti+1))]II ds 
i=O i 

n-i (i+1)k 

+ Z |i IIAYe A(t-s)[I + fJqkA]-1 lyT 
i=O Ik 

* [F(U(ti), U(ti+1)) - F(Ui, Ui+' )]II ds 
n-1 i+1) 

+ r 1i 11AY[I +fqkAfi [e-A(t-s) -e(n-i-)kA]lyTF(Ui Ui+' ) | ds 
i=O i 
n-I r(i+lI)k 

+ Z k IIAY[I + f3qkA]f1 
i=O I 

[le-(n-i-)kAyT - Tn-'-i(kA)]F(Ui, Ui+)|') ds 

=II + I2 + I3 + I4 + I5 + I6. 

We consider the terms {II}6_ separately below. For I , we may apply (2.23) 
to deduce that 

lJAY[e AnklYT -Tn(kA)]UoII < Ille-AnkyT - Tn(kA)II IIAYU0II 
(3.14) Cor 

n 

Below, K(.) and K(., *) are taken to be generic continuous positive func- 
tions nondecreasing with respect to their arguments on their respective domains: 
[0, oo) and [0, oo) x [0, oc). In addition, they depend on k and n only 
through t . However, they are allowed to depend on the bound M2 for IIAYUn II, 
whereas this is not true of Co in inequality (3.14). It is also assumed that 
K(T, r) > 1 . Below, C will denote a generic positive constant independent of 
k, n, t and r. 

Taking the integrand of the ith term of I2, for i > I, we obtain the following 
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for s E [ti, ti+i), using Lemma 3.1 and the definition of F: 

IIAYe-A(t-s)lyT(F(U(s), U(s)) - F(U(ti), U(ti+1))II 

? IIAe -A(t-s)ll illYTIj jjF(U(s), U(s)) - F(U(ti), U(tj+1))II 

? C(t - s)-7 jflji ijf(u(s)) -f(u(ti))II)+flqIIf(u(s)) -f(u(ti+))II 

? K(T, r)(t - s)- ((ti+-s) + (st1)) 
s s 

K(T, r)k 
s(t-s)Y 

Considering the integrand corresponding to i = 0, and using only the bound- 
edness of IIf(u(t))II, we instead obtain 

IjAYe-A(t-s)jYT[F(U(s), U(s)) - F(U(O), U(k))]jl < K(r)(t - s)-. 

Gathering these terms together, we deduce that 

I2 < K(T, r) (kt7 + / ks-'(t/2)-7 ds + j (t/2)-Ik(t - s)r7 ds) 

(3.15) 
? K(T, r)t-7k(1 + logn) 

K(t, r)kl-Y-, C E (0, 1 - y). 
Considering the i th term in the sum I3, for i E [0, n - 2], we evaluate the 

integral, and bound it above using Lemma 3.2: 
(i+l )k 

Ilk AYe-A(t-s)(I-[I + fqkA-1 )1YTF(U(t,), U(ti+ 1)) ds 
- IIAye-A(n-i-I)kA-'[I - eAkI(flqkA[I + flqkA]-f)lYTF(U(ti), U(ti+i))jl 

< K(T, r)kl-Y-ellA1-e-A(n-i-)kA-l[I - e-Ak]flq(kA)Y+&[I + /lqkA]f1II 
< K(T, r)k2-Y76 (k(n - i - I ) -1 

for C E (0, 1 - y). For the term corresponding to i = n - 1, the integrand 
may be bounded by K(T, r)(nk - s)-Y for s E [(n - l)k, nk), and hence the 
integral of this term is bounded by K(T, r)k1-Y. Thus, taking the terms in 
reverse order, we get 

(3.16) 13 < K(T, r) [kl-Y +k2--e(ki)-(1-9) 

< K(T, r)(te/C)k1-Y-e. 
Considering part of the integrand in the ith term of I4, we may use the 

Lipschitz property of f on the ball B(2(A7); 0, M2) to obtain 

IF(U(ti ), U(ti+, )) - F(U', Ui+ 1) 11 

zq-1 

E lfjl If(u(ti)) - f(Ui+j)ll + flqllf(u(if+) -f(Ui+q)JI 
K=( 

? K(T, r)(Ai + Ai+l ), 
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where Ai = IIAY(U(ti) - Ui)II. We also note the following inequality: If a, b E 
(0, 1), then 

1 - (l-a)b < ab(l - a)b-1. 
Combining these two results below, we obtain 

n-I r(i+l)k 
14 - , jik C(t - s)-YK(T, r)(Ai + Ai+1) ds 

i=0 
n-iF / 1 \Y' 

< K(T, r)kl (/ EA [i1 - I - i) (n -) 

(3.17) n-i 
< K(T, r)kl Y E(n - i)-(Ai + Ai+1) 

i=O 
n-i 

< 2K(JT, r)k1- Z(n - i)-YIIAY(U(ti) - Ui)II 
i=o 

+ K(t, r)k1j-YIAY(U(tn) - Un) 11. 

Considering the ith term in I5 for i E [0, n - 2], and taking e as for I3, 
we obtain the following: 

(i+l)k 
j|+1)k IIA [I + flqkA]-l[e-A(t-s) - e-(n-i-l)kA]jyTF(Ui, U'+1)Il ds 

< CIIF(UiS .Ui+)lu 
k 

I*AY[I + kflqA]-lAi-ee-A(n-i-I)kA-i+e[e-A(ks) - Il/I ds 

k 

<K(T, r) ((n - i - I)k) l+6kl-Y-E ds 

K(T, r)k2-Y((n - i- -)k)-1+E 

The term i = n- 1 in I5 may be bounded by K(t, R)k -kY. Using a comparison 
integral, we deduce that 

(3.18) I5 < K(t, r)k1-Y-' {kZ((n-i-l)k)-1+} 

< K(T, r)(te/e)k-Y-e. 
For e as for I3, the ith term of I6 may be bounded as follows, for i = 

0, ..., n - 2, using Theorem 1 (the term for i = n - 1 is < K(T, r)kI-Y): 

j|+1)k IIAY[I + flqkA]-1[le(f l --)kyT - Tn i(kA)]F(Ui, U`+1)II ds 

< K(T, r)kl-y(n - i)-' < K(T, r)k2-Y-e(k(n - i))-'+E 

Using a comparison integral, we obtain 
n-I 

(3.19) I6 < K(T, r)kiY ek Z((n - i)k)-1+E 
< K(T * r)(tE |e)k1-i=O 
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Assembling the terms {i}6j from (3.15)-(3.20), we fix e E (0, 1 - y), and 
take (5= 1 - y - e, to deduce that 

IIAI(U(t)-Un) I < II +12 +13 +14 +1I5+16 

< Cor + K(T, r)k3 + K(T, r)k3 

n-i 
(3.20) + K(T, r)k1 Z(n - i)-YIIAY(U(ti) - UI)9 

i=o 

+ K(t, r)k1-YIIAY(U(t) - Un)II 

+ K(t, r)k3 + K(T, r)k3. 

The inequality remains implicit however, and it is necessary that k be small 
enough for the coefficient of IIAY(U(t) - Un)II, on the right-hand side of (3.20), 
to be less than 1/2; that is, we require 

(3.21) K(T, r)k-y <2 

After some rearrangement, we obtain 

IIAY(U(t) - Un)II < 2(Crk)1 + K(T, r)k3 

(3.22) n-i 
+ K(T, r)kl1Y Z(n - i)-YIIAY(U(ik) - Ui)I 

i=o 

for n > 1 . As shown in [18], by defining the extension 

(3.23) e(s) = IIAY(U(mk) - Um)II for s E [mk, (m - 1)k), 

one may apply the Gronwall Lemma, described in [16, p. 188], to the inequality 

e(t) < 2COrk1 -yty- 1 + K(T , r)k3 + K(T , r) j(t - s)-ye(s) ds, 

and, reversing the piecewise constant extension (3.23), deduce that 

(3.24) IIAY(U(nk) - Un)II < 2COrny-1 + K(T, r)k3. 

Fixing K(T, r) to be the constant on the right-hand side of (3.24), we impose 
the further condition, 

(3.25) k < K(T, r)-1/, 

which will generally tend to be more restrictive than (3.21). For such k, 

(3.26) IIAY(U(nk) - Un)II < 2COr + 1 = Ml. 

In combination with Hn-1, (3.26) implies Hn. Hence, we conclude Hn-1 X 

Hn, and the theorem follows by induction and (3.24). o 
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4. ATTRACTOR APPROXIMATION 

As noted in the Introduction, the theory of attractor approximation for one- 
step time discretizations was considered by Hale, Lin and Raugel in [14]. Be- 
low, we introduce their terminology and state their main convergence theorem. 
However, we substitute the term monoid for semigroup on every occasion that 
it refers to the continuous semigroup. This makes no difference to the proofs. 

Subsequently, we show, using the error bound derived in ?3, that the hypothe- 
ses required by the convergence theorem are satisfied by the monoid 1S(t)YT 
and the semigroup Sk, corresponding to (3.10) and (3.8), respectively, pro- 
vided that k is sufficiently small. Thus, we establish the existence of a family 
of attractors for the family of discrete semigroups, upper semicontinuous with 
respect to k at k = 0. 

Definition 4.1. If B c 2', z a Banach space, we denote an r-neighborhood 
of B by N(2; B, r) or by N(B, r). 

Definition 4.2. If A and B are two sets in 2, then we denote the nonsym- 
metric Hausdorff semidistance from A to B by 

3(A, B) sup inf lx - Y. 
xEA yEB 

Definition 4.3. For V C 22, the family of maps {y(t)}to, 5(t): V -2, 

is a CO-monoid if 
(i) 5(t)x is a continuous function for all (x, t) e V x [0, oo); 
(ii) 5(t)5(s) = 5(t + s) for all t, s > 0. 

If 5(0) = Iz, then 5(t) is a semigroup. 

Definition 4.4. Suppose 5>(t) is a CO-monoid defined on an open subset V of 
2?. A bounded subset P c V is called absorbing in V, or an absorbing set in 
V, if for all bounded B c V there is a time to(B) such that S(t)B c P for 
all t > to. 

A compact set V c V, for which 5(t)V = for t > 0, is said to be a 
local attractor in V, if N(,', e) is an absorbing set in V for all e > 0. 

Discrete semigroups etc. are defined in an analogous fashion, see [13]. 

Definition 4.5. A discrete semigroup y'n defined on V c 2- is said to be 
asymptotically smooth if, for every nonempty closed bounded set B c V, there 
is a compact set J(B) with the following property: given e > 0, there exists 
an integer ne > 0 such that, for all n > n, one has 5'2nL(B) C N(J(B), e), 
where 

L(B)=-{xEBj5ynxEB forn>O}. 

In the sequel, we shall use the following result concerning asymptotic smooth- 
ness of discrete semigroups, the proof of which is given in [ 13, p. 13]. 

Lemma 4.1. Suppose that the discrete semigroup 5yn is defined on V C t and 
that for each n E N there exist two mappings Pn and Qn from V to t such 
that 

(i) 5n =Pn + Qn; 
(ii) Qn maps bounded sets to sets with compact closure; 
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(iii) There exists a function it: N x R+ R+ such that for all r > 0, 
IlPnxll < j(n, r) for all x E B(O, r) n V, and limn oo (n, r) = 0. 

Then, 5jn is asymptotically smooth. 

Before quoting the abstract attractor convergence theorem, we first define the 
concept of conditional uniform approximation. 

Definition 4.6. A monoid 56(t), defined on V c ', is said to be conditionally 
approximated on U, a bounded subset of V, uniformly on a compact subinter- 
val I of (0, oo) by the family of discrete semigroups {S,9}kE(0,k ], for some 
ko > 0, if there exists a function I(k, I, U) such that 

(i) limk.eo i7(k, I, U) = 0; 
(ii) When, for x E U, k E (0, ko] and nk E I, both ';`x and 5';(nk)x 

are defined, then 115(nk)x - ,9knxil < i?(k, I, U). 

Theorem 4 (Hale-Lin-Raugel). Suppose that 5?(t) is a CO-monoid defined on 
V, a bounded subset of a Banach space 2; that v is a local attractor for 
5(t) in a bounded open set U c V; that 5?(t)U c V for all t > 0, and 
that there exists 3 > 0 such that N(U, 3) c V. Suppose, in addition, that 
there exist constants to, ko > 0 such that 5knN(U, 3) c V for all k E (0, ko] 
and n < to/k. Suppose, moreover, that thefamily {5knI}kE(O0h conditionally 
approximates 5?(t) on V, uniformly on compact subintervals of [to, oo). 

Then, given e > 0, there exist k1 (e) and To > to such that 

(4.1) 5knU c N(Y, E) forallnk > To andk E (0, k1]. 

If, in addition, 5kn is asymptotically smooth on U for all sufficiently small k, 
the discrete semigroup 5kn possesses a local attractor Vk in U. Furthermore, 
if k E (0, k, (e)], then N(sV, e) D Vk . Otherwise said, 

(4.2) lim (4k, ) = 0- 
k -0 

Proof. The proof is similar to [14, Proposition 2.2, Theorem 2.4]. 0 

We remark that once the attractors .Vk have been shown to exist, it is the 
convergence of these sets to v in Hausdorff semidistance (see Definition 4.2) 
that shows their upper semicontinuity at k = 0. Lower semicontinuity is equiv- 
alent to the convergence of 3(V, Vk) to 0; however, as is discussed in [13] 
and [1 5], far more information is required to ensure this latter property. 

The next two lemmas verify that the hypotheses of Theorem 4 are satisfied 
by the monoid 1S(t)YT and the semigroup Sk, defined in ?3, provided that 
S(t), defined by (3.1), possesses a local attractor. 

Lemma 4.2. Suppose that for the semigroup S(t), defined on ?9(AY) by (3.1), 
there exist do > 0 and bounded open sets U, W c -'?(AY) such that, for all 
t > 0, S(t)N(U, 6o) C W. Suppose also that S(t) has a local attractor v 
for N(U, do). Suppose, furthermore, that Skn is the semigroup corresponding to 
(3.8), and 1S(t)YT is the monoid corresponding to (3. 10). 

Then there exist a bounded set V c -'(AY)q and constants 31 > 0 and ko > 0 
such that the following statements are true: 

(i) 1X isa local attractorfor 1S(t)YT in N(O(AY)q; 1U, 61); 
(ii) 15(t)YTN(Y(AY)q; 1 U, 31) C V,for all t >0 
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(iii) There exists to > 0, such that SknN(2(AY)q; 1U, 51) C V for all n < 
to/k, for all k E (0, ko]; 

(iv) Thefamily {Skn}kE(o,,] conditionally approximates 1S(t)YT on V, uni- 
formly on all compact subintervals I c (0, oo). 
Proof. For (i), (ii) and (iii), let us fix r > 0, such that B(O, r) D N(1U, 3o), 
and let 31 = 5o/IIYII, V = N(O(AY)q; 1 W, 2COr + 1), where Co is the con- 
stant in the statement of Theorems 1 and 3. Since YTN(QJ(AY)q; 1U, 31) C 
N(O(AY); U, do), (i) and (ii) follow from the hypotheses. 

Given some arbitrary to E (0, oo), the proof of Theorem 3 implies 
that, provided k is sufficiently small, Skn is defined on B(O, r), and 
I1AY(U(nk) - Un)J) < 2Cor + 1, for all nk E [0, to]. This implies property 
(iii). 

To prove (iv), we now take r to be such that B(O, r) 2 V, T = sup(I) and 
r1(k, I, V) to be the right-hand side of (3.1 1). Theorem 3 shows that, when k 
is sufficiently small, Skn is defined and the norm of the error in approximating 
1S(nk)YT on V x I is bounded by il. Since I c (O, oo), we have 0 < t1 _ 
inf(I), which implies that if nk E I, then 1/n < klt1 . So, all the terms in the 
expression for 11 tend to 0, as k tends to 0. o 

In the following lemma, we show that Skn is asymptotically smooth by show- 
ing that the hypotheses of Lemma 4.1 are satisfied. 

Lemma 4.3. Suppose now that, in addition to the conditions of Lemma 4.2, the 
sectorial operator A has compact resolvent, and obeys (2.2) for a strictly positive 
constant a. Then, for all sufficiently small k, the semigroup Skn defined by (3.8) 
is asymptotically smooth on a neighborhood of 1 U. 
Proof. We recall from (3.8) that we may write 

n-i 
SknU = Un = Tn(kA)UO + E Tn-i-l (kA)[I + flqkA]-EF(U', U i+). 

i=O 

Using the terminology of Lemma 4.1, we define 

PUOU = Tn(kA)UO, 
n-I 

QnU = E T n-i- (kA)[I + flqkA]-fF(U', U'+'). 
i=O 

We will proceed to show that Pn and Qn possess the required properties. 
Inequality (2.22) implies that ITn (kA)II < Ce-ank/2 , so Pn satisfies condi- 

tion (iii) of Lemma 4.1. 
Lemma 4.2 implies that, for sufficiently small k, Skn1U C V for all n E N, 

where V is as defined in Lemma 4.2. Hence, Un is contained in a bounded 
subset of O(Ay)q. 

Recall from (3.1) that f maps bounded sets of O(AY) to bounded sets of 
X. This implies that F maps bounded sets of O(Ay)q x O(Ay)q to bounded 
sets of Xq. The mapping diag([I + flqA]-1) maps bounded sets of Xq to 
bounded sets of O(A)q. Finally, for m > 0, Tm(kA) is subject to the same 
bound (2.22), considered as a member of Y(2(A)q), as it is considered as a 
member of Y(Xq), and so is a bounded map on 2(A)q . 



ATTRACTORS FOR MULTISTEP METHODS 1119 

Hence, Qn maps bounded sets of 2(AY)q to bounded subsets of ??2(A)q. 
The domain 9(A) is compactly imbedded in _(AY), if A has compact resol- 
vent [16, Theorem 1.4.8], and therefore Q, is a completely continuous mapping 
for all n E N, as required by condition (ii) of Lemma 4.1. o 

Theorem 5. Suppose that U is a bounded open subset of ?2(A7), that 3 > 0, 
and that the following hypotheses are satisfied: 

(i) A is a sectorial operator with compact resolvent on X satisfying (2.2) for 
some constants M > 1, a > 0 and 0 E (0, 7r/2); 

(ii) For some y E [0, 1), f: 2(AY) -- X is locally Lipschitz continuous; 
(iii) The semigroup S(t), defined on 2(AY) by (3.1), possesses a local attrac- 

torsV inN(U,3); 
(iv) There exists W, a bounded subset of ?2(AY), such that S(t)N(U, 3) C 

W for all t > 0; 
(v) For p, q > 1, the pth-order q-step linear multistep method (3.2) is 

strongly A(a)-stable for some a E [6, 7r/2). 
Then, for sufficiently small k, the semigroup Skn, defined on bounded subsets 

of c(AY)q by (3.2, 3.8), possesses a local attractor ik, attracting in a neigh- 
borhood of 1 U. Moreover, given e > 0, there exists k, = k, (e) such that for all 
k E (0, kl], 

(4.3) _Vk C N(_12(Ay)q; 1_V, e). 

Otherwise stated, 

(4.4) lim Ak , 1-W) = 0. 
k- O 

Proof. Lemmas 4.2 and 4.3 show that all the hypotheses of Theorem 4 hold for 
Sn and the monoid 1S(t)YT, defined by (3.8) and (3.10), respectively. Hence, 
Theorem 5 follows from Theorem 4. 0 

We remark that if y E Rq is such that yTl = 1 , then 

lim3(yT k, _) =0. 

5. SUMMARY AND CONCLUSIONS 

We review here how we arrived at our main result, Theorem 5, and discuss 
some of the implications of our work. The difficulties of directly applying 
the theory of [14] to multistep methods were considered in the Introduction, 
together with the motivation for the constructions defining the commensurable 
families of operators Skn and VS(t)yT on the q-fold product space for a q-step 
method. These constructions having been defined, a slight generalization of 
the main result of [14] was necessary to take account of the fact that vyT, the 
identity of vS(t)yT, is not the same as the identity of the space on which it 
operates, as is required by the usual definition of a semigroup. Such deficient 
semigroups were termed monoids in Definition 4.3, and our modification of the 
main result of [14] was stated as Theorem 4. 
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From an abstract point of view, one might have chosen to stop once this 
background was established. However, as pointed out in the Introduction, ap- 
plying the theory-that is, verifying the hypotheses of Theorem 4-poses more 
difficulties than is generally true in the one-step case. Hence, a broad exam- 
ple was chosen-linear multistep methods approximating sectorial evolution 
equations-and the theory was applied in this context. 

The main points needing to be verified to apply Theorem 4 were that, in a 
neighborhood of 1W, 

(i) Skn is well defined, 
(ii) that it approximates 1S(t)YT uniformly, and 
(iii) that it is asymptotically smooth. 
The proof of Lemma 4.2 established that the abstract conditions (i) and (ii) 

may be restated in terms of vectors Un and U(t) representing, respectively, 
discrete and continuous trajectories from a common initial data point U0 , taken 
from a neighborhood of 1V. This in turn depended on Theorem 3, which 
showed that the trajectory { Un} >o is well defined, for sufficiently small k, 
and bounded the error made in approximating U(t). 

Although the proof of asymptotic smoothness, established through Lemmas 
4.1 and 4.3, was relatively short, it did require two restrictive conditions: 

(i) That A obeys (2.2), with strictly positive a; 
(ii) That the operator A has compact resolvent. 

The first, (i), was necessary to conclude, from Theorem 1, that limn_,0 IIT" (kA)II 
= 0 . On the other hand, (ii) was needed to show that Sk - Tn(kA) is compact. 
These two conditions were essential requirements of Lemma 4.1. We note that 
the error bound given by Theorem 3 might have been obtained under weaker 
assumptions on the method, but the full force of Theorem 1, for which strong 
A(a)-stability was necessary, was also required for Lemma 4.3. 

Potentially of some interest is the style of error bound considered in Theo- 
rems 1 and 3, despite the fact that they are singular at t = 0 and suboptimal 
for p > 1. Theoretical necessity forced us to consider a numerical method in 
the absence of a starting method. The error bounds derived may be interpreted 
variously. They still imply a conventional error bound for the approximation of 
a particular trajectory starting at u0, if U0 is chosen so that YTUO = u0. On 
the other hand, if one considers the trajectories generated by a linear multistep 
method from fixed initial data U0, for various values of k, then Theorem 3 
shows that for positive t, the numerical trajectories converge towards the con- 
tinuous trajectory u(t) given by the solution of (3.1) for initial data u0 = yTUO, 
as k tends to 0. 

In asymptotic approximation one is frequently concerned not with approxi- 
mating a specific trajectory, but rather with approximating a set of continuous 
trajectories by a set of discrete trajectories. With this interpretation, the bounds 
of Theorem 1 and 3 are quite natural, since it is clearly unnecessary in such a 
case to expend effort approximating a specific trajectory closely at t = 0 using 
a starting method. We also remark that whilst the singularity at t = 0 is an 
essential property of the bounds of Theorems 1 and 3, we believe that subopti- 
mality is not. In a future paper, we will consider optimal-order error estimates 
for multistep approximations of e-At in the absence of a start-up procedure. 
However, currently we do not know how to obtain an optimal bound in the 
nonlinear case for p > 1 . 
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